Logo de Phytoplant
Binding and Signaling Studies Disclose a Potential Allosteric Site for Cannabidiol in Cannabinoid CB2 Receptors.

Introduction

The mechanism of action of cannabidiol (CBD), the main non-psychotropic component of Cannabis sativa L., is not completely understood. First assumed that the compound was acting via cannabinoid CB2 receptors (CB2Rs) it is now suggested that it interacts with non-cannabinoid G-protein-coupled receptors (GPCRs); however, CBD does not bind with high affinity to the orthosteric site of any GPCR. To search for alternative explanations, we tested CBD as a potential allosteric ligand of CB2R.

Material and méthods

CBD was purified from the Cannabis variety PILAR (CPVO/ 20160115) following a patented method described in the Phytoplant Patent: “Methods of purifying cannabinoids, compositions and kits thereof” with code 9765000 B2. The CBD has a purity > 95%. CANNA products were used for the variety cultivation.

Results

Radioligand and non-radioactive homogeneous binding, intracellular cAMP determination and ERK1/2 phosphorylation assays were undertaken in heterologous systems expressing the human version of CB2R. Using membrane preparations from CB2R-expressing HEK-293T (human embryonic kidney 293T) cells, we confirmed that CBD does not bind with high affinity to the orthosteric site of the human CB2R where the synthetic cannabinoid, [3H]-WIN 55,212-2, binds. CBD was, however, able to produce minor but consistent reduction in the homogeneous binding assays in living cells using the fluorophore-conjugated CB2R-selective compound, CM-157. The effect on binding to CB2R-expressing living cells was different to that exerted by the orthosteric antagonist, SR144528, which decreased the maximum binding without changing the KD. CBD at nanomolar concentrations was also able to significantly reduce the effect of the selective CB2R agonist, JWH133, on forskolin-induced intracellular cAMP levels and on activation of the MAP kinase pathway.

Discusion

These results may help to understand CBD mode of action and may serve to revisit its therapeutic possibilities.

Go to the publication

Other publications

First Report of Charcoal Rot Caused by Macrophomina phaseolina on Hemp (Cannabis sativa L.) Varieties Cultivated in Southern Spain

See more

Development of ornamental Cannabis sativa L. cultivars: phytochemical, morphological, genetic characterization and propagation aspects

See more

Influence of media composition and genotype for successful Cannabis sativa L. in vitro introduction

See more

Yield of new hemp varieties for medical purposes in a semi-arid Mediterranean environment (Spain)

See more

Cannabinoids and terpenoids yields of the ornamental Cannabis sativa L. cultivar ‘Divina’ characterized by a variegated foliage as morphological marker

See more

Cannabidiol Prevents the Expression of the Locomotor Sensitization and the Metabolic Changes in the Nucleus Accumbent and Prefrontal Cortex Elicited by the Combined Administration of Cocaine and Caffeine in Rats.

See more

Impact of Plant Density and Irrigation on Yield of Hemp (Cannabis sativa L.) in a Mediterranean Semi-arid Environment

See more

Tetrahydrocannabinolic acid is a potent PPARγ agonist with neuroprotective activity.

See more

Cannabigerol Action at Cannabinoid CB1 and CB2 Receptors and at CB1–CB2 Heteroreceptor Complexes.

See more

Seeking suitable agronomical practices for industrial hemp (Cannabis sativa L.) cultivation for biomedical applications.

See more

Cannabidiol skews biased agonism at cannabinoid CB1 and CB2 receptors with smaller effect in CB1-CB2 heteroreceptor complexes.

See more

Potentiation of cannabinoid signaling in microglia by adenosine A2A receptor antagonists

See more

Pharmacological potential of varinic-, minor-, and acidic phytocannabinoids

See more

Pharmacological data of cannabidiol- and cannabigerol-type phytocannabinoids acting on cannabinoid CB1, CB2 and CB1/CB2 heteromer receptors.

See more

The potential of near infrared spectroscopy to estimate the content of cannabinoids in Cannabis sativa L.: A comparative study.

See more

Untargeted characterization of extracts from Cannabis sativa L. cultivars by gas and liquid chromatography coupled to mass spectrometry in high resolution mode.

See more

A Comparative In Vitro Study of the Neuroprotective Effect Induced by Cannabidiol, Cannabigerol, and Their Respective Acid Forms: Relevance of the 5-HT1A Receptors.

See more

Exploring the mysteries of cannabis through gas chromatography

See more

Biological Activity of Cannabis sativa L. Extracts Critically Depends on Solvent Polarity and Decarboxylation.

See more

Thermal desorption-ion mobility spectrometry: A rapid sensor for the detection of cannabinoids and discrimination of Cannabis sativa L. chemotypes

See more

Similarities and differences upon binding of naturally occurring Δ9-tetrahydrocannabinol-derivatives to cannabinoid CB1 and CB2 receptors

See more

Politica de Calidad

See more

Ayudas de la Unión Europea para el autoconsumo fotovoltaico

See more

Other services

cannabis cuttings Plant material

Check our Variety catalogue

women at lab Technical assistance

Experience and scientific rigor to walk by your side in your project.

cannabis cutting Licensable technology

Use our varieties and patented technological processes.

Woman at lab Research

R+D+i in cultivation, breeding and extraction.

Ask for information

Can we be of help to you? Do you have any questions about us? Write to us and we will contact you as soon as possible.

To enable the functionality of sending messages from the website we need you to accept technical cookies, as we use Google's reCAPTCHA 3 to prevent messages from fraudulent bots.